

Information technology – lecture 10 Number systems and representations. Computer arithmetic.

Roman Putanowicz R.Putanowicz@L5.pk.edu.pl

Positional notation

Let:

$$\beta \in N, \beta \ge 2$$
 – the base
 x_k – digits, $0 \le x_k < \beta$ with $k = -m, \dots, n$

Notation:

$$x_{\beta} = (-1)^{s} [x_{n}x_{n-1} \dots x_{1}x_{0} \dots x_{-1}x_{-2} \dots x_{-m}] \quad x_{n} \neq 0$$

Interpretation:

$$x_eta = (-1)^s \left(\sum_{k=-m}^{k=n} x_k eta^k
ight)$$

h

Most common positional systems

decimal - base
$$\beta = 10$$
,
digits: 0,1,2,3,4,5,6,7,8,9
binary - base $\beta = 2$,
digits: 0,1
octal - base $\beta = 8$,
digits: 0,1,2,3,4,5,6,7
exadecimal - base $\beta = 16$,
digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Numbers in decimal system

$$\begin{aligned} & 175_{(10)} \to \text{digits} \to & 1 \mid 7 \mid 5 \\ & 175_{(10)} = (-1)^0 \left([\mathbf{1} \times 10^2] + [\mathbf{7} \times 10^1] + [\mathbf{5} \times 10^0] \right) \quad (1) \end{aligned}$$

Numbers in binary system

$$\begin{split} 175_{(10)} &\to \text{ digits} \to 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 1 \mid 1 \mid 1 \\ \\ 175_{(10)} &= (-1)^0 \left([\mathbf{1} \times 2^7] + [\mathbf{0} \times 2^6] + [\mathbf{1} \times 2^5] + [\mathbf{0} \times 2^4] + \right. \\ & \left. [\mathbf{1} \times 2^3] + [\mathbf{1} \times 2^2] + [\mathbf{1} \times 2^1] + [\mathbf{1} \times 2^0] \right) \end{split}$$

Numbers in octal system

$$\begin{split} & 175_{(10)} \to \text{digits} \to & 2 \mid 5 \mid 7 \\ & 175_{(10)} = (-1)^0 \left([\textbf{2} \times 8^2] + [\textbf{5} \times 8^1] + [\textbf{5} \times 8^0] \right) \end{split}$$

Numbers in hexadecimal system

$$\begin{split} & 175_{(10)} \rightarrow \text{digits} \rightarrow \text{ A } \mid \text{F} \\ & 175_{(10)} = (-1)^0 \left([\textbf{A} \times 16^1] + [\textbf{F} \times 10^0] \right) \end{split}$$

Conversion binary \rightarrow octal \rightarrow decimal

binary	10101111		
	10	101	111
	2	4+1	4+2+1
octal	257		
		-	
	$2\times8^2+5\times8^1+7\times8^0$		
decimal	175		

Project "The development of the didactic potential of Cracow University of Technology in the range of modern construction" is co-financed by the European Union within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education

Conversion decimal \rightarrow other bases

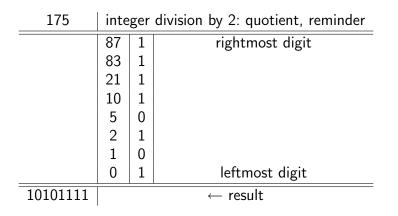
While the quotient is not 0

Divide the decimal number by the new base.

Make the reminder the next digit to the left in the answer.

Replace the decimal number with the quotient.

Conversion decimal \rightarrow binary



Conversion decimal \rightarrow hexadecimal

175	integer division by 16: quotient, reminder		
	10	F	rightmost digit
	0	A	leftmost digit
AF	← result		

Arithmetic in binary system

Addition

84	01010100
+ 91	+ 01011011
175	10101111

Multiplication

35	00100011
* 5	* 00000101
175	00100011
	00000000
	+ 00100011
	10101111

Fixed point representation of real numbers

Let us assume that a real number is represented with N memory positions such that 1 position is hold for sign, N - k - 1 positions for integer digits, k positions for the digits after the point.

Notation:

$$x = (-1)^s \left[a_{N-2}a_{N-3} \dots a_k \cdot a_{k-1} \dots a_0 \right]$$

Interpretation:

$$x = (-1)^s \beta^{-k} \sum_{j=0}^{N-2} a_j \beta^j$$

Floating point representation of real numbers

Let us assume that a real number is represented with N memory positions such that 1 position is hold for sign, N - k - 1 positions for integer digits, k positions for the digits after the point.

Notation:

$$x = (-1)^s \left[0 \cdot a_1 a_2 \dots a_t \right] \beta^e$$

Interpretation:

$$x = (-1)^s \times m \times \beta^{e-t}$$

where: t – the number of allowed significant digits a_j , m – integer number called mantisa e – integer number called exponent The number zero has a separate representation.

Floating point number formats

On 32 bit machine:

Single precision

1	8 bits		32 bits
S	e	n	

Double precision

1	11 bits	52 bits
S	е	n

Floating point number sets

Let us define a set of floating point numbers:

$$\mathcal{F}(\beta, t, L, U) = \{0\} \cup \{x \in R : x = (1)^s \beta^e \sum_{i=1}^t a_i \beta^- i\}$$

where: t – number of significant digits β – base, $0 < a_i \leq \beta - 1$ – digits range (L, U) such that $L \leq e \leq U$

Normalisation of floating point number representation

To enforce uniqueness in number representation it is assumed that:

$$a_1 \neq 0$$
$$m \geqslant \beta^{t-1}$$

Such representation is called **normalized**. With such setup a_1 is the primary significant digit, a_t last significant digit.

Distribution of floating point numbers

Floating point numbers are not equally spaced along the real line

machine epsilon – the smallest number in the set of floating point numbers such that $1+\varepsilon_{\it m}>1$

IEEE 754 Standard

By choosing different set of values for β , t, L and U it is possible to build multiple floating point number systems. Thus the necessity of defining a standard for floating point arithmetic. One of the most widely-used is IEEE Standard for Floating Point Arithmetics (IEEE 754). The standard defines:

- arithmetic formats (binary and decimal)
- interchange formats,
- rounding algorithms,
- operations (arithmetic and other)
- exception handling