
Information technology – lecture 4
Elements of computer programming. Programming languages

Roman Putanowicz
R.Putanowicz@L5.pk.edu.pl

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Programming languages

There are multitude of programming languages and several
ways of categorising them depending on their characteristics.
Without going much into details we will distinguish the
classifications:

I From the point of view of the complexity of instructions:
I Low-level programming languages : assembly languages
I High-level programming languages : C, C++, Java, etc.

I From the point of view of the usage patterns:
I System programming languages: (C, C++, Fortran, Java, Ada) –

associated with the tags like: efficiency safety, static type control.
I Scripting languages: (Python, Ruby, Tcl, Guile, Ch) – associated

with the tags like: rapid prototyping, flexibility, advanced
introspection features

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



High-level programming languages paradigms

I Imperative programming – language example Octave, C.
Characterized by sequential execution of instructions, use
of variables that represent memory locations, use of
assignment statement to change the values of these
variables.

I Functional programming – language example Lisp, Haskel.
Based on mathematical concept of function. Computation
is expressed in term of the evaluation of functions. No
variables and no assignment statements. Repetition
expressed in terms of recursive function calls.

I Logic programming – language example PROLOG.
Based on principles of symbolic logic.

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Programming languages for numerical simulations

Some languages are considered as better suited for writing
numerical simulation codes. However picking the right
language is a difficult thing often depending on non-technical
issues (like available human resources in terms of programmers
or local experts).
As most to the numerical algorithms utilize vector and matrix
abstractions one important factor when evaluating a language
is to what extend the language support direct use of these
abstractions. Support for vector and matrices can be either
built-in into a language (Matlab, Octave, Fortran) or can be
provided by a set of libraries.
Some popular choices are: Ada, C, C++, Fortran (both 77
and 90 and above), Matlab, Octave, Python, Ch.

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Python

What is Python

I Scripting, object-oriented, rapid prototyping, general
purpose language

I Quite popular for writing scientific codes, especially when
supported by C/C++/Fortran extension libraries

I Extensible and embeddable in applications

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Selected Python features

I Portability – UNIX, Windows, Mac, BeOS, VMS, Cray, ...
I Compiles to interpreted byte code
I Automatic memory management through reference

counting
I Many GUI libraries
I Several extension modules (NumPy for numerics)

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Mathematical software
Mathematical software is software used to model, analyse, or
calculate numeric, symbolic, or geometric data.(wikipedia)

Application areas:
I Symbolic mathematics – computer algebra systems
I Statistics
I Geometry
I Numerical analysis

Categories of software:
I applications, e.g. GeoGebra
I interactive platforms, e.g. Scilab, Sage
I problems solving environments (PSE), e.g. Diffpack
I software libraries, e.g. GNU Scientific Library, Trilinos

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Selected software packages

Alphabetical list:
I Diffpack
I Maple
I MathCad
I Mathematica
I Matlab
I Maxima http://maxima.sourceforge.net/
I Octave http://www.gnu.org/software/octave/
I R http://www.r-project.org/
I Sage http://www.r-project.org/
I Scilab http://www.scilab.org/

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education

http://maxima.sourceforge.net/
http://www.gnu.org/software/octave/
http://www.r-project.org/
http://www.r-project.org/
http://www.scilab.org/


Software taxonomies

Licensing:
I Open Source
I Proprietary

Scope:
I Symbolic computations
I Numerical computations

Operating mode:
I WYSWIG, GUI
I traditional programming, CLI

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Matlab

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Maple

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Maxima + wx = wxMaxima

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Scilab

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Octave

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Octave + Qt = QtOctave

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Scalar product: C versus Octave program

1 #include <stdio.h>
2

3 #define DIM 3
4 int main() {
5 char *fname = "vect.dat";
6 FILE *fh = fopen(fname, "r");
7

8 double u[DIM];
9 double v[DIM];

10 int i;
11

12 for (i=0; i<DIM; i++) {
13 fscanf(fh, "%lf", u+i);
14 }
15 for (i=0; i<DIM; i++) {
16 fscanf(fh, "%lf", v+i);
17 }
18 double s=0;
19 for (i=0; i<DIM; i++) {
20 s += u[i]*v[i];
21 }
22 printf("Scalar product of u and v: %g\n", s);
23 return 0;
24 }

1 fname = ’vect.dat’;
2 fh = fopen(fname, ’r’);
3 dim = 3;
4 u = fscanf(fh, ’%lf’, dim);
5 v = fscanf(fh, ’%lf’, dim);
6 s=0;
7 for i=1:dim
8 s+=u(i)*v(i);
9 end

10 printf(’Scalar product of u and v: %g’, s);

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Scalar product: Octave versus Octave program

1 fname = ’vect.dat’;
2 fh = fopen(fname, ’r’);
3 dim = 3;
4 u = fscanf(fh, ’%lf’, dim);
5 v = fscanf(fh, ’%lf’, dim);
6 s=0;
7 for i=1:dim
8 s+=u(i)*v(i);
9 end

10 printf(’Scalar product of u and v: %g’, s);

1 fname = ’vect.dat’;
2 A = load(’vect.dat’);
3 u = A(1:3);
4 v = A(4:6);
5 s = dot(u,v);
6 printf(’Scalar product of u and v: %g\n’, s);

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

Problem: Write Octave program that illustrates
affine transformation of a circle.

x̂ = ax + by + c

ŷ = ex + fy + g

x̂ = T11x + T12y + T13
ŷ = T21x + T22y + T23

−1

0

1

2

3

4

−2 0 2 4 6 8

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

—
1 function [XY] = polygon(x,y,R,N)
2 t = linspace(0,2*pi,N+1);
3 XY = zeros(N+1,2);
4 XY(:,1) = x + R*cos(t);
5 XY(:,2) = y + R*sin(t);
6 end

—
7 function plot_poly(XY, color)
8 h = line(XY(:,1), XY(:,2));
9 set(h, ’color’,color);

10 end

—
11 function [NXY] = transform_poly(XY, T)
12 NXY=zeros(size(XY));
13 for i=1:rows(XY)
14 x = XY(i,1);
15 y = XY(i,2);
16 xh = T(1,1)*x + T(1,2)*y + T(1,3);
17 yh = T(2,1)*x + T(2,2)*y + T(2,3);
18 NXY(i,:) = [xh,yh];
19 endfor
20 endfunction

—
21 N=30
22 xy = polygon(1,1,2,N);
23 plot_poly(xy,"red");
24 T = [2.0, 0.0, 1.0;
25 0.5, 1.0, 0.0];
26 xy1 = transform_poly(xy, T);
27 plot_poly(xy1,"blue");
28 axis("equal")
29 print("affine.fig")
30 pause()

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



References

1. Maxima http://maxima.sourceforge.net/
2. R http://www.r-project.org/
3. Sage http://www.r-project.org/
4. Scilab http://www.scilab.org/
5. GNU Octave http://www.gnu.org
6. GNU Octave. A high-level interactive language for

numerical computations, by John W. Eaton, David
Bateman, Søren Hauberg, edition 3 for Octave version
3.0.2, Network Theory Ltd, 2008

7. Python http://www.python.org/
8. Own materials

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education

http://maxima.sourceforge.net/
http://www.r-project.org/
http://www.r-project.org/
http://www.scilab.org/
http://www.gnu.org
http://www.python.org/


Thank you for your attention

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Scalar product: Octave version 1

1 fname = ’vect.dat’;
2 fh = fopen(fname, ’r’);
3 dim = 3;
4 u = fscanf(fh, ’%lf’, dim);
5 v = fscanf(fh, ’%lf’, dim);
6 s=0;
7 for i=1:dim
8 s+=u(i)*v(i);
9 end

10 printf(’Scalar product of u and v: %g’, s);

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Scalar product: Octave version 2

1 fname = ’vect.dat’;
2 A = load(’vect.dat’);
3 u = A(1:3);
4 v = A(4:6);
5 s = dot(u,v);
6 printf(’Scalar product of u and v: %g\n’, s);

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

1 function [XY] = polygon(x,y,R,N)
2 t = linspace(0,2*pi,N+1);
3 XY = zeros(N+1,2);
4 XY(:,1) = x + R*cos(t);
5 XY(:,2) = y + R*sin(t);
6 end

back to the main code

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

7 function plot_poly(XY, color)
8 h = line(XY(:,1), XY(:,2));
9 set(h, ’color’,color);

10 end

back to the main code

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

11 function [NXY] = transform_poly(XY, T)
12 NXY=zeros(size(XY));
13 for i=1:rows(XY)
14 x = XY(i,1);
15 y = XY(i,2);
16 xh = T(1,1)*x + T(1,2)*y + T(1,3);
17 yh = T(2,1)*x + T(2,2)*y + T(2,3);
18 NXY(i,:) = [xh,yh];
19 endfor
20 endfunction

back to the main code

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education



Case study: affine transformation in 2D

21 N=30
22 xy = polygon(1,1,2,N);
23 plot_poly(xy,"red");
24 T = [2.0, 0.0, 1.0;
25 0.5, 1.0, 0.0];
26 xy1 = transform_poly(xy, T);
27 plot_poly(xy1,"blue");
28 axis("equal")
29 print("affine.fig")
30 pause()

back to the main code

Project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction” is co-financed by the European Union
within the confines of the European Social Fund and realized under surveillance of Ministry of Science and Higher Education


