Poniżej znajduje się kod źródłowy programu do całkowania numerycznego funkcji skalarnych jednej zmiennej.
<sxh python> “”“ Calculate integral of scalar function in 1D ”“” import itertools import argparse import quadratures
from mesh import Mesh from integrands import Integrand from integrators import MeshIntegrator
def parse_command_line():
"""Parse command line"""
parser = argparse.ArgumentParser()
parser.add_argument('-q', '--quadrature', dest='quadrature',
default='NewtonCotes',
choices = quadratures.known_quadratures())
parser.add_argument("-n", '--nodes', type=int, dest='nnodes', default=2,
help="number of quadrature nodes")
parser.add_argument("-i", '--integrand', default='x**2', dest='integrand',
help="expression to be integrated")
parser.add_argument("meshfile", help="name of the mesh file")
args = parser.parse_args()
return args
def main():
args = parse_command_line()
mesh = Mesh()
mesh.load(args.meshfile)
integrand = Integrand(args.integrand)
quadrature = quadratures.make_quadrature(args.quadrature, args.nnodes)
integrator = MeshIntegrator()
integral = integrator.integrate(mesh, integrand, quadrature)
print("Integral of %s is %g" %(args.integrand, integral))
if name == 'main':
main()
</sxh>
<sxh python> “”“ Define 1D Mesh class ”“”
class Mesh:
"""Represents on dimensional mesh """ def __init__(self): self.nodes = list()
def load(self, filename):
"""Read from file a list of nodes"""
with open(filename, 'r') as f:
for l in f:
self.nodes.append(tuple(float(x) for x in l.split()))
def nelem(self): return len(self.nodes)-1
</sxh>
<sxh python> “”“ Define integrand function ”“”
class Integrand:
"""Represents integrand as 1D scalar function """ def __init__(self, expression): self.expression = expression
def evaluate(self, x): return eval(self.expression)
def __call__(self, x): return self.evaluate(x)
</sxh>
<sxh python> “”“ Integrate function over a mesh ”“” import itertools
class MeshIntegrator:
"""Calculate integral over a domain discretised by a mesh """
def integrate(self, mesh, integrand, quadrature):
"""Integrate function fun using numerical integration on given mesh
"""
integral = 0.0
for i in range(mesh.nelem()):
integral += self.integrate_element(i, mesh, integrand, quadrature)
return integral
def make_mesh_fun(self, mesh, fun):
xcoord = [ node[0] for node in mesh.nodes ] discrete_fun = [ fun(x) for x in xcoord ] return discrete_fun
def integrate_element(self, i, mesh, integrand, quadrature):
x1 = mesh.nodes[i][0]
x2 = mesh.nodes[i+1][0]
qr = quadrature
integral = 0.0
for (x, w) in itertools.zip_longest(qr.nodes(x1, x2), qr.weights(x1,x2)):
integral += w * integrand(x);
return integral
</sxh>
<sxh python> “”“ Define factory for different quadratures ”“” import newtoncotes import gausslegendre
def known_quadratures():
return ["NewtonCotes", "GaussLegendre"]
def make_quadrature(name, nnodes):
if name == "NewtonCotes":
return newtoncotes.NewtonCotes(nnodes)
elif name == "GaussLegendre":
return gausslegendre.GaussLegendre(nnodes)
raise RuntimeError("Invalid quadrature %s %d" %(name, nnodes))
</sxh>
<sxh python> “”“ Newton-Cotes numerical integration formulas ”“”
class NewtonCotes:
_weights = { 2: (0.5, 0.5),
3 : tuple(x/6.0 for x in (1, 4, 1))
}
def __init__(self, nnodes): self.ref_weights = self._weights[nnodes] self.degree = len(self.ref_weights)-1
def nodes(self, a=0.0, b=1.0): n = len(self.ref_weights) dx = (b-a)/(n-1) return [a+i*dx for i in range(n)]
def weights(self, a=0.0, b=1.0): return ((b-a)*x for x in self.ref_weights)
class TrapezoidQuadrature(NewtonCotes):
def __init__(self):
super().__init__(2)
class SimpsonQuadrature(NewtonCotes):
def __init__(self):
super().__init__(3)
</sxh>
<sxh python> “”“ Gauss-Legendre numerical integration formulas ”“” import itertools import math from math import sqrt
def antisymmetrize(seq, central=tuple()):
return list(itertools.chain([-x for x in seq[::-1]], central, seq))
def symmetrize(seq, central=tuple()):
return list(itertools.chain(seq[::-1], central, seq))
class GaussLegendre:
_nodes = { 1: [0.0],
2: antisymmetrize([sqrt(1.0/3.0)]),
3: antisymmetrize([sqrt(3.0/5.0)], [0.0]),
4: antisymmetrize([sqrt((3-2*sqrt(6/5))/7),
sqrt((3+2*sqrt(6/5))/7)])
}
_weights = { 1: [2.0],
2: symmetrize([1.0]),
3: symmetrize([5/9], [8/9]),
4: symmetrize([(18+sqrt(30))/36,
(18-sqrt(30))/36])
}
def __init__(self, nnodes): self.ref_nodes = self._nodes[nnodes] self.ref_weights = self._weights[nnodes]
def nodes(self, a=0.0, b=1.0): shift = (a+b)/2 scale = (b-a)/2 return [shift + scale*x for x in self.ref_nodes]
def weights(self, a=0.0, b=1.0): jacobian = (b-a)/2 return [jacobian*w for w in self.ref_weights]
</sxh>