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Abstract

This paper presents a new approach to problem of identification of elastic parameters of homogeneous, elastic and hexagonally or-
thotropic plates. The proposed solution is based on dispersion curves for Lamb waves propagating in free waveguides and Bayesian
inference for sequential estimation of elastic parameters. We solve the problem by treating the unknown elastic parameters as state
variables of a stationary dynamic system and formulating the sequential identification problem as a Bayesian state estimation problem.
We solve the problem by using particle filtering and show results in case of elastic parameters estimation for a thin orthotropic plate.
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1. Introduction

Currently guided Lamb waves are often used for non-
destructive identification of elastic constants of materials. In gen-
eral, the identification procedures are based on minimization of
the discrepancy between experimental and numerical or analyti-
cal dispersion curves. Thus, they are unable to characterize re-
construction uncertainty in a systematic manner. In this context
Bayesian methods can be useful by offering systematic approach
to uncertainty quantification [1]. Bayesian methods are also se-
quential by solving identification problems recursively. Recently,
Słoński in his paper applied particle filter in the problem of iden-
tification of elastic parameters of aluminum thin plates [4].

In this work an application of particle filter for sequential
stochastic identification of elastic parameters of thin plates using
Lamb waves monitoring is proposed. The procedure is based on
the comparison of numerical and experimental dispersion curves.
The identification results are then presented in the form of a pos-
terior probability density distribution over elastic parameters and
the posterior describes the uncertainty. The proposed procedure is
verified on an example of pseudo-experimental dispersion curves
computed for a thin orthotropic plate.

2. Identification algorithm

We formulate the sequential identification problem as a
Bayesian state estimation problem. The elastic parameters are
assumed to not change in time, so they are treated as time-
independent state variables, see [4] for details. The main goal
of Bayesian state estimation is sequential inference of the poste-
rior distribution p(xk+1|Y1:k+1) starting from a prior distribu-
tion p(xk|Y1:k). The inference is performed recursively in two
steps: prediction step and update (correction) step. In the first
step the prediction of state variables distribution p(xk+1|yk) be-
fore applying new measurements is done. This distribution is
computed using the sum rule of probability and integrating out
the state variables as

p(xk+1|Y1:k) =

∫
p(xk+1|xk)p(xk|Y1:k)dxk. (1)

Then the new measurements yk+1 are used to update the

prior to obtain the posterior distribution p(xk+1|Y1:k+1) apply-
ing the Bayes’ rule

p(xk+1|Y1:k+1) =
p(yk+1|xk+1)p(xk+1|Y1:k)

p(yk+1|Y1:k)
, (2)

where the denominator in (2) is computed from

p(yk+1|Y1:k) =

∫
p(yk+1|xk+1)p(xk+1|Y1:k)dxk+1. (3)

The update step in Eq. (2) can be also written in the recursive
form that is more useful for obtaining particle filter algorithm.
Using Bayes’ rule we can rewrite Eq. (2) as

p(xk+1|Y1:k+1) = p(xk|Y1:k)
p(yk+1|xk+1)p(xk+1|xk)

p(yk+1|Y1:k)
.

(4)

The Bayesian state estimation described above gives the pos-
terior distribution over the states. It does not give however, the
way to find the solution efficiently using both equations (1) and
(2). In addition, the exact inference is intractable and an approx-
imate method has to be applied. In this work a particle filter (PF)
algorithm is used. It is based on sequential Monte Carlo sampling
and is described for example in [3, 4].

3. Numerical experiments

The effectiveness of the proposed method is assessed by per-
forming numerical exercises for an orthotropic plate. The prop-
erties of the plate (Young’s moduli, Poisson’s ratios and mass
density) and the plate thickness, applied in the experiments, are
presented in Fig. 1.

Having defined the plate parameters, a pseudo-experimental
fundamental antisymmetric dispersion curvesA0 were computed
using numerical approach described in [5]. In this approach it
is assumed that the dynamic problem is formulated as a plain
strain problem and solved by numerical simulations via commer-
cial finite element code Abaqus in a few series of modal analyzes.
The numerical model in Abaqus for a 30mm by 1.2mm plate seg-
ment has 3600 square CPE4 elements with characteristic length
le = 0.1mm. These dispersion curves were approximated by us-
ing basis functions and corresponding parameters that were found
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with the least squares method. The parameters were treated as
the observed variables y. Fig. 1 presents fundamental dispersion
curve A0 for the orthotropic plate and its approximation using 5
basis functions proposed in [2].

Figure 1: Fundamental dispersion curve for orthotropic plate with
thickness h=1.2mm and its approximation using 5 basis functions

Initial and uncertain knowledge about Young’s modulus E1 is
represented by a prior distribution p(x0). We applied a Gaussian
prior probability density distribution p(x0) = N (µ0, σ

2
0), with

mean value µ0 = 130.0 GPa and standard deviation σ0=1.3 GPa
(coefficient of variation (CoV) was 1%). Fig. 2 shows the prior.

Figure 2: Prior and posterior distributions for Young’s modulus

The approximate posterior distribution of Young’s modulus
given pseudo-experimental dispersion curves PN (xk|yk) in the
k-th step was computed using the particle filter-based identifi-
cation procedure described above. In experiments, we applied
N = 2000 particles to obtain the approximate posterior distribu-
tion and the number of steps in the sequential identification was
set to K=500. The posterior has mean value µpost = 131.0 GPa
and standard deviation σpost=0.19 GPa (CoV is 0.15%).

Fig. 3 shows the sequential nature of the elastic constant iden-
tification process by plotting the evolution of the mean value of
the posterior distribution and the corresponding plot for the one-
standard deviation error bars as a function of the step number.
There is also shown a solid horizontal line representing the ref-
erence Young’s modulus value (131.0 GPa) applied in numerical
experiments. From the plot, it may be observed that the estima-
tion process converged to the reference value quite rapidly.

Figure 3: Plot of evolution of mean value of the posterior

Tab. 1 presents statistical parameters of prior and posterior
distributions in the form of mean values, standard deviations and
coefficients of variation (COV) are given. From the table, it can
be stated that the final mean value of the posterior distribution is
the same as the reference value. Moreover, the coefficient of vari-
ation decreased from 1% for the prior distribution to only 0.15%
for the final posterior distribution. Fig. 2 shows the final one-
dimensional posterior distribution together with the prior.

Table 1: Statistical parameters of prior and posterior distributions

Parameter Prior Posterior
Mean value (GPa) 130.0 131.0
Standard deviation (GPa) 1.3 0.19
COV (%) 1.0 0.15

4. Final conclusions

This paper presents an application of Bayesian methods and
particle filter for reconstruction of elastic parameters of plates.
The proposed procedure is based on the comparison of experi-
mental and numerical dispersion curves from guided Lamb waves
monitoring. Taking into account the assumed experimental errors
and considering propagation of errors in the sequential estima-
tion, the uncertainty in the identified value of Young’s modulus
E1 is less than 0.5%. More results for other elastic parameters
will be presented during the conference.
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