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Prediction of concrete fatigue durability using Bayesian neural networks
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Abstract

The utility of Bayesian MLP neural networks to predict concrete fatigue durability as a function of concrete mechanical parameters of a
specimen and characteristics of the loading cycle is investigated. Bayesian approach to learning neural networks allows automatic control
of the complexity of the non-linear model, calculation of error bars and automatic determination of the relevance of various input variables.
Comparative results on experimental data set show that Bayesian neural network works well.
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1. Introduction

Bayesian methods are a robust and powerful approach to prediction
problems and can be incorporated into the neural network approach.
For neural networks Bayesian methods were introduced among oth-
ers by MacKay and Neal [7, 9]. Standard neural networks training
methods give a single “optimal” vector of network parameters � ∗

as a result of cost function E( � ) minimization [2]. In the Bayesian
approach network parameters are treated as random variables. Thus
Bayesian methods for neural networks yield posterior distribution of
network parameters.

Bayesian neural networks have proved to be an effective tool for
regression problems. In paper [6] Bayesian neural network was ap-
plied to prediction of concrete properties and the Bayesian approach
gave better results than alternative non-Bayesian methods in the case
problem. Bayesian neural network and Gaussian process models
were also used to prediction of deformed and annealed microstruc-
tures [1].

In this paper we have applied a Bayesian neural network to the
problem of predicting the concrete fatigue durability which is de-
fined as the limit number of cycles N which causes the specimen fa-
tigue damage. As a reference method we have used an early-stopped
committee of 10 MLP networks. Early-stopped committee is an ad
hoc method but it is fast and has proved to be quite a robust method
when used as committee of early-stopped MLPs [6].

2. Bayesian neural networks

In the Bayesian approach, we first define a prior probability distribu-
tion p( � ) which expresses our beliefs about the parameters before
the data is observed. Once we observe the data, Bayes’s theorem can
be used to update our beliefs and we obtain the posterior probability
density p( � |D).

In the present paper a Bayesian MLP neural network with one hid-
den layer was applied to model the relationship between the inputs
and output. In matrix form this model can be written as

f( � ; � ) = bo + �
og(

�
h + �

h � ), (1)

where � denotes all the parameters �
h,

�
h, �

o and bo, which are
the hidden layer weights and biases, and the output layer weights and
bias, respectively. The function g(·) is tanh activation function.

2.1. Gaussian noise model

In general, the measured values t will contain noise e, so the model’s
prediction, f( � ; � ), is related to the target output by

t = f( � ; � ) + e. (2)

The commonly used noise model for the regression problems is a
Gaussian N(0, σ2) with zero mean and constant variance σ2.

The probability of observing a data value t for a given input vector� is then given by

p(t| � , � ) =
1

(2πσ2)1/2
exp

�
−

(f( � ; � ) − t)2

2σ2 � (3)

where f( � ; � ) represents a network function as the mean of distri-
bution and parameter σ controls the variance of the noise.

We also have used as a noise model Student’s t-distribution with
unknown degrees of freedom ν.

2.2. Prior distribution of model parameters

We have assumed prior distribution for the model parameters p( � )
to be Gaussian distribution N(0, αk), where the α’s are the inverse
variance hyperparameters (k = wh, bh, wo, bo). For example, Gaus-
sian prior distribution for the hidden layer weights p( �

h) is defined
as follows

p( �
h) =

1

ZW (αwh
)

exp � −αwh

2
‖ �

h‖
2 � , (4)

where ZW (αwh
) = � 2π

αw
h

� Wh/2

and Wh is the number of the hid-

den layer weights.
We have also applied a hierarchical Gaussian prior distribution for

the hidden layer weights called Automatic Relevance Determination
(ARD) [7, 8]. The ARD prior distribution is an automatic method
for determining the relevance of the inputs. In ARD all weights
connected to the same input i has the same variance hyperparam-
eters αi. These hyperparameters are important because they con-
trol the complexity of the model. The irrelevant inputs should have
smaller weights in the connections to the hidden units than more im-
portant weights [6].

2.3. Posterior distribution of model parameters

Bayesian neural network posterior distribution of network parame-
ters given the data D from Bayes’ theorem:

p( � |D) =
p(D| � )p( � )

p(D)
, (5)
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where p(D| � ) is the likelihood of parameters � , p( � ) is the prior
distribution and p(D) is a normalizing constant.

For data points independently drawn from distribution defined by
equation (3) the likelihood of the network parameters given data set
D is

p(D| � ) =
1

(2πσ2)1/2
exp � − N�

n=1

(f( ��� ; � ) − tn)2

2σ2 � . (6)

2.4. Distribution of network output

The predicted distribution p(tn+1| � n+1,D) of target values tn+1

for a new input vector � n+1 once we have observed the data set
D = {( � 1, t1), . . ., ( � n, tn)} can be expressed as an integration
over the posterior distribution of weights of the form

p(tn+1| � n+1,D) = � p(tn+1| � n+1,D, � )p( � |D)d � , (7)

where p(t| � ,D, � ) is the conditional probability model.
In general, the required integrations in equation (7) are analyti-

cally intractable. The integration can be performed by making sim-
plifying assumptions about the form of p( � |D) or by employing
Markov Chain Monte Carlo (MCMC) methods to evaluate the inte-
grals numerically:

� p(t| � ,D, � )p( � |D)d � ≈
1

m

m�
i=1

p(t| � ,D, �
i) (8)

where �
i are samples of weight vectors generated from distribu-

tion p( � |D). In the MCMC, samples are generated using a Markov
chain. Its stationary distribution is the desired posterior distribution
of weights.

3. Predicting concrete fatigue durability

In our analysis, the concrete fatigue durability is a function of con-
crete compressive strength. (fc), ratio of minimal and maximal
strength in compressive cycle of loading (R = σmin/σmax), ra-
tio of compressive fatigue strength of concrete (χ = fcN/fc) and
frequency of the loading cycle (f ). The problem of predicting con-
crete fatigue durability was formulated as a mapping from the input
vector � (4x1) = {fc, R, f, χ} to the scalar output y = log N .

3.1. Data set

In order to train and test Bayesian MLP neural network model a large
amount of representative experimental data is required. In paper [3]
a wide experimental evidence was described and compiled, corre-
sponding to more than 400 tests performed in 14 laboratories. The
concrete specimens were subjected to cycles of compressive loadings
and the numbers of cycles N which caused the specimens fatigue
damage were measured. In this paper we have used 216 selected
results of laboratory tests from 8 papers collected in [3].

Table 1 shows the inputs and output variables details (range, mean
and standard deviation of data set used in modelling the relation). In
the analysis both the inputs and output variables were first standard-
ized to zero mean and unit standard deviation as follows:

x′

i =
xi − x̄

σx
(9)

where x̄ is an average value and σx is the standard deviation:

x̄ =
1

n

n�
i=1

xi (10)

Table 1. Input and output variables details

Variable Range Mean St.Dev.

fc [MPa] 20.70 - 45.20 34.68 8.84
R [–] 0.00 - 0.88 0.14 0.18
f [Hz] 0.025 - 150.0 21.30 39.38
χ [–] 0.49 - 0.94 0.74 0.11

log N [–] 1.86 - 7.34 4.56 1.41

σx = ���� 1

1 − n

n�
i=1

(x1 − x̄)2. (11)

3.2. Related works

In paper [3] an empirical formula was derived by Furtak as the fol-
lowing implicit relation between variables:

logN =
1

A 	 log(1.16 · Cf/χ) + log(1 + B · R · logN) 
 (12)

where: χ = fcN/fc i R = σmin/σmax and the parameters accord-
ing to paper [3] have the following values:
A = 0.008 − 0.118 · log(σI/fc), B = 0.118 · (σII/σI − 1),
Cf = 1 + 0.07 · (1 − R) · log f , σI and σII are critical strengths.

In previous works various feed-forward neural network models
were used to the problem of predicting concrete fatigue durability:
back propagation (BPNN) [4], radial basis function (RBFNN) [5,
11], adaptive neuro-fuzzy inference system (ANFIS) [12], and fuzzy
weights NN (FWNN) [10].

4. Experiments and results

4.1. Models settings used in the experiments

We have used Bayesian MLP neural networks models with a single
layer of hyperbolic tangent units (neurons) and linear output units.
All units had biases. The number of hidden units was either 5 or 10.
Bayesian neural network models were trained with MCMC (Markov
Chain Monte Carlo) method.

Bayesian neural network (BNN) was compared with two mod-
els: an early-stopped committee of MLP networks (ESC MLP) and
Gaussian Process (GP) model, which is a non-parametric regression
method [1]. The ESC MLP model contained 10 networks which
were created with different division of the training data into learn-
ing (estimating) and stopped (validation) sets for each member. We
have used one third of the training examples (rounded down if nec-
essary) for stopping (validation) and the rest for learning (estimating
the weights). The simplest form of committee involves taking the
output of the committee to be the average of the outputs of L net-
works. The committee prediction is in the form [2]

fcom( � ) =
1

L

L�
i=1

fi( � ). (13)

Bayesian neural network and Gaussian Process models were im-
plemented and trained with MCMC (Markov Chain Monte Carlo)
method in Flexible Bayesian Modelling (FBM) software by Radford
Neal [9] (original programs are available from Radford Neal’s web
page http://www.cs.utoronto.ca/∼radford/).



Table 2. Comparison of generalization performance of various mod-
els in predicting concrete fatigue durability. The shown testing errors
give the RMS errors and average percentage errors (APE) averaged
over 10-fold cross-validation with standard deviation of the mean.

Model RMSE±std APE±std [%]

Furtak’s form. 0.885 ± 0.11 18.6 ± 3.0

ESC 4-5-1 0.703 ± 0.10 13.5 ± 2.6
BNN ARD N 0.694 ± 0.09 13.3 ± 2.3
BNN – tν 0.692 ± 0.09 13.0 ± 2.5

MLP 4-10-1 0.727 ± 0.17 14.2 ± 3.8
ESC 4-10-1 0.731 ± 0.10 14.1 ± 2.6
BNN ARD N 0.693 ± 0.09 13.3 ± 2.4
BNN – tv 0.689 ± 0.09 13.0 ± 2.6

GP – tv 0.674 ± 0.09 13.0 ± 2.6

ESC MLP network model was implemented and trained
by scaled conjugate gradient optimization method in MAT-
LAB with Netlab toolbox [8] (available from web page
http://www.ncrg.aston.ac.uk/netlab/).

4.2. Results of the experiments

The generalization capability of the models in predicting concrete fa-
tigue durability was estimated by 10-fold cross-validation. The esti-
mated prediction errors (mean and standard deviations of the RMSE
and APE (average percentage error) are presented in Table 2.

In column Model ARD means that the hierarchical Gaussian prior
distribution for the weights was used and ‘–’ means that ARD was
not used. The letter N indicates that Gaussian noise model was as-
sumed and tν means that the Student’s t-distribution with unknown
degrees of freedom ν noise model was used.

In Fig. 1 the relations fc − log N for empirical formula by Fur-
tak [3] and Bayesian neural network are shown for tests performed
by Gray et al. (1961) and for tests made by Antrim and Mc Laugh-
lin (1959) taken from [3] (for the first fold split of data). The dash-dot
lines in Fig. 1 show the relations modelled by Bayesian neural net-
work and the dashed lines are the corresponding 1σ error bars which
were computed on the basis of RMS error for all 216 patterns (for
the first fold split of data).

In Fig. 2 concrete fatigue durability values measured vs predicted
by Bayesian neural network (for the first fold split of data) with 1σ
error bars (for 22 testing patterns only) are shown.

Fig. 3 shows the variation in mean square error on the standard-
ized training and testing sets (for the first fold split of data) for the
networks sampled in the last 100 iterations. There is also shown
the mean squared error on the testing set using the averaged predic-
tions from all networks sampled up to the given iteration (within the
last 100).

5. Discussion and conclusions

Some conclusions from the results are as follows. The best mod-
els were Gaussian Process model and those BNN with Student’s t-
distribution noise model without ARD prior distribution. The early-
stopped committee MLP ESC models were not able to sufficiently
control the complexity of the model comparing with Bayesian neu-
ral networks models. Neural prediction of the number of fatigue
cycles gives lower values of log N and locally better approximates
the relation than estimation by the empirical formula.
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Fig. 1. Comparison of concrete fatigue durability prediction of rela-
tions fc − log N for tests performed by: a) Gray et al. (1961), b)
Antrim and Mc Laughlin (1959) taken from [3].
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Fig. 2. Concrete fatigue durability values measured vs predicted by
Bayesian neural network with 1σ error bars (for 22 testing patterns
only)
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Fig. 3. Mean square error on the training and testing sets for net-
works sampled in the last 100 iterations (one of the runs)

The results presented in the present paper demonstrate the feasi-
bility of using a Bayesian neural network model to predict concrete
fatigue durability. The uncertainty in the model’s predictions is due
largely to noise in the training data. The input data were noisy and
sparse. Smaller uncertainties in predictions can be obtained through
the use of a larger and more accurate data set.
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