
ECCM-2001
European Conference on

Computational Mechanics

June 26-29, 2001
Cracow, Poland

OPTIMAL LAYOUTS OF A TWO-PHASE ISOTROPIC MATERIAL
IN THIN ELASTIC PLATES

S.Czarnecki

Institute of Structural Mechanics
Warsaw University of Technology
e–mail: s.czarnecki@il.pw.edu.pl

T.Lewiński
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Abstract. The paper concerns the problem of minimization of the total compliance of the two-
phase plates. These phases are characterized by two different thicknesses:h1, h2, h2 > h1. The
relaxation of the problem follows the paper by Gibiansky and Cherkaev (report No 914, Fiz.
Tekhn. Inst. im. A. Ioffe, AN SSSR, Leningrad 1984). Thus the composite domains are admitted
where the microstructure is that of 2nd rank ribbed plates with mutually orthogonal stiffening.
Distribution of the three design variables:ω1(x), θ1(x), φ(x) are found iteratively by using the
updating scheme of M. Bendsøe. The layouts obtained are characterized by some properties
that can be predicted by qualitative optimization methods.
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1 Introduction

The paper deals with minimizing the total compliance of thin elastic plates. If a distributed
transverse loadingp = p(x) causes the deflection fieldw = w(x) the compliance means simply

J =

∫
Ω

p(x)w(x) dx ; (1)

herex = (x1, x2) ∈ Ω, Ω being the plate middle plane. Thus minimization ofJ is equivalent to
maximization of an overall stiffness of the plate.

Let the plate stiffness tensor be non-homogeneous:D = D(x),D = (Dαβλµ). The deflection
fieldw entering (1) satisfies the variational equilibrium equation∫

Ω

v,αβD
αβλµ(x)w,λµ dx =

∫
Ω

pv dx (2)

for all v being kinematically admissible. Assume that the material of the plate is given as isotrop-
ic, with moduliE andν. Let the plate thicknessh assume two values:h2 andh1, h2 > h1 > 0.
We writeh(x) ∈ {h1, h2} or h(x) = h1χ1(x) + h2χ2(x), χ2(x) = 1− χ1(x) andχ1(x) equals
1 in Ω1, whereh = h1 andχ1 = 0 in Ω2 = Ω\Ω1. Note thatχα is a characteristic function of
the domainΩα.

We consider a family of plates of a given volume

V = h1

∫
Ω

χ1 dx+ h2

∫
Ω

χ2 dx (3)

One of the oldest and still challenging optimum design problems reads:

(P )

findχ1 such thatJ assumes minimum under the condition of the volume being fixed,
see (3). The fieldw entering (1) satisfies the equation (2) in which the relationD(h)

corresponds to the thin plate theory.

A quixotic history of attempts of solving the above problem directly has eventually ended up
in 1984, when Gibiansky and Cherkaev [1] proposed a correct relaxation of the problem. It
has turned out that the problem(P ) should be replaced with a new one(P̃ ) in which: χα(x)

are replaced withmα(x), D(x) is replaced withD̃(x) wheremα(x) are continuous functions
defined inΩ and assuming values in[0, 1], while D̃ corresponds to a thin composite plate
constructed by two subsequent and orthogonal layerings, in the sense of the homogenization
theory of plates, see Lewiński and Telega [2].

The optimum designs in the relaxed sense(P̃ ) has been a subject of the papers by Gibiansky
and Cherkaev [1], Diaz et al. [3], Krog and Olhoff [4], Lewiński and Othman [5], Othman [6],
Kolanek and Lewínski [7], Olhoff et al. [8]. Since only selected optimization problems for thin
plates are presented in this literature it is thought appropriate to put forward here some relaxed
solutions for thin simply supported and clamped quadratic plates, subjected to a uniform loading
and discuss their properties. The characteristic features of the relaxed solutions are:

i) the optimal plate is isotropic and non-homogeneous but can, paradoxically, be treated as
orthotropic in some subdomains;
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ii) there are three types of those subdomains; they are determined by the value of the non-
dimensional invariant of the moment state:||deviator(M)||/|tr(M)|, the norm|| · ||
being defined as Euclidean;

iii) in two of those subdomains the principal directions ofM determine the direction of
ribs at the microscale. In the third subdomain one observes a deviation between these
directions;

iv) in all subdomains the directions of principal moments and principal strains (changes of
curvature) coincide.

The aim of the paper is to check these properties by numerical computation and to discuss the
morphology of the mentioned subdomains, for the variable initial data:h1/h2 andV .

2 Relaxed formulation

For isotropy the bending stiffness tensor is represented by

D = 2kI1 + 2µI2 , (4)

where

k =
Eh3

24(1− ν)
, µ =

Eh3

24(1 + ν)
(5)

and the components of tensorsIα are given by

I1 =

(
1

2
δαβδλµ

)
I2 =

(
1

2

(
δαλδµβ + δαµδβλ − δαβδλµ

))
(6)

The bending stiffness tensor is represented byD1 in Ω1 andD2 in Ω2, where

Dα = 2kαI1 + 2µαI2 (7)

with

kα =
E(hα)3

24(1− ν)
, µα =

E(hα)3

24(1 + ν)
(8)

The conditionh2 > h1 implies
k2 > k1 , µ2 > µ1 (9)

andD2 −D1 is positive definite, hence invertible.

The homogenized tensor̃D is constructed in two steps. First we construct a ribbed plate along
thex1 direction, with area fractionsθ1 andθ2 = 1 − θ1. Then the homogenized material thus
obtained is mixed with the stronger one to form ribs alongx1, with area fractionsω1,ω2 = 1−ω1

alongx2. This theoretical construction is explained in Lewiński and Telega [2, Sec. 24.2] in

3



S. Czarnecki, T. Lewiński

detail, hence it is sufficient to recall the final result. The non-zero components ofD̃ referred to
the orthonormal basis are

D̃1111 =
1

2

(
D̃11 + 2D̃12 + D̃22

)
, D̃2222 =

1

2

(
D̃11 − 2D̃12 + D̃22

)
,

D̃1122 =
1

2

(
D̃11 − D̃22

)
, D̃1212 =

1

2
D̃33 ,

D̃2211 = D̃1122 , D̃2121 = D̃1221 = D̃2112 = D̃1212

(10)

where
1

2
D̃11 = k2 −

m1(k2 + [µ]m)∆k(k2 + µ2)

η(θ1,m1)

1

2
D̃12 =

m1(2θ1 − 1−m1)∆k∆µ(k2 + µ2)

η(θ1,m1)

1

2
D̃22 = µ2 −

m1(µ2 + [k]m)∆µ(k2 + µ2)

η(θ1,m1)

1

2
D̃33 = 〈µ〉m , D̃α3 = D̃3α = 0

(11)

The following notation is introduced:

η(θ1,m1) = 4(1− θ1)(θ1 −m1)∆µ∆k + (k2 + µ2)[k + µ]m ,

[g]m = m1g2 +m2g1 , 〈g〉m = m1g1 +m2g2 , ∆g = |g2 − g1| ,

{g}m = (m1g
−1
1 +m2g

−1
2 )−1

(12)

for g ∈ {µ, k}. Moreover,

m2 = ω2 + ω1θ2 , m1 = θ1ω1 (13)

andm1 +m2 = 1.

If the microstructure of properties (10) is rotated by an angleφ with respect to the original coor-
dinate system, then the stiffnessesD̃ij

φ referred to the original orthonormal basis are determined
by the transformation rules:

D̃11
φ = D̃11 , D̃12

φ = cos 2φD̃12 , D̃13
φ = sin 2φD̃12 ,

D̃22
φ = cos2 2φD̃22 + sin2 2φD̃33 , D̃23

φ = sin 2φ cos 2φ
(
D̃22 − D̃33

)
,

D̃33
φ = sin2 2φD̃22 + cos2 2φD̃33 , D̃ij

φ = D̃ji
φ

(14)

and the components̃Dαβλµ
φ are given by (10) withD̃ij replaced byD̃ij

φ . We shall use the fol-
lowing notation

D̃αβλµ
φ = D̃αβλµ(θ2, ω2, φ) (15)

to stress that̃Dφ is determined by two area fractions:θ2 andω2, and an angleφ; their range is:

0 ≤ θ2 ≤ 1 , 0 ≤ ω2 ≤ 1 , 0 ≤ φ ≤ 2π (16)
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Just the functionsθ2(x), ω2(x) andφ(x) are design variables of the relaxed problem(P̃ ). This
problem consists in minimizing the functionalJ , see (1), wherew solves the variational equa-
tion (2) withD replaced byD̃(θ2, ω2, φ), and the isoperimetric condition (3) is replaced by∫

Ω

[h1m1(x) + h2m2(x)] dx = V (17)

The fieldsm1,m2 are expressed byΩ2 andθ2 by (13).

For special values ofω2 andθ2 the relaxed formulation encompasses the initial one, but the
optimal solution usually admits a region where0 < θ2 < 1, 0 < ω2 < 1 and there the plate has
an undetermined thickness.

3 Direct numerical solution of the relaxed problem

3.1 Necessary conditions of optimality

We shall follow the algorithm of Bendsøe [9]. It is helpful to recall it here.

Let us introduce the bilinear form

a(w, v) =

∫
Ω

v,αβD̃
αβλµ(θ2, ω2, φ)w,λµ dx (18)

and the linear form

f(v) =

∫
Ω

pv dx (19)

The conditions (16) are expressed with using slack variablesα1, . . . , α4 as follows

−θ2 + (α1)2 = 0 , −1 + θ2 + (α2)2 = 0 ,

−ω2 + (α3)2 = 0 , −1 + ω2 + (α4)2 = 0
(20)

Note thatJ = f(w) andw satisfies:a(w, v) = f(v) for all kinematically admissible fieldsv.
We define the Lagrangian function:

L = f(w) + [f(v)− a(w, v)]+Λ

{∫
Ω

[(h2 − h1)(θ2 + ω2 − ω2θ2) + h1] dx− V
}

+

+

∫
Ω

[λ1(−θ2 + (α1)2) + λ2(−1 + θ2 + (α2)2)+λ3(−ω2 + (α3)2) + λ4(−1 + ω2 + (α4)2)] dx

(21)

Note thatv plays simultaneously two roles: of a trial field and of the Lagrangian multiplier for
the equilibrium equation:

a(w, v) = f(v) (22)

The stationary conditionδL = 0 with respect tow, φ, θ2, ω2, αi imply

f(δw)− a(v, δw) = 0 (23)
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∂L

∂φ
= 0 , (24)

∂L

∂θ2

= 0 , (25)

∂L

∂ω2

= 0 , (26)

∂L

∂αi
= 0 (27)

The equation (23) impliesv = w, wherew solves (22). The equation (24) gives a pointwise
condition

∂

∂φ

[
καβD̃

αβλµ(θ2, ω2, φ)κλµ

]
= 0 (28)

whereκαβ(v) = −v,αβ. The roots of this equation can be found analytically, see Fedorov and
Cherkaev [10], Banichuk [11], Pedersen [12]:

φ1 = φκ , φ2,3 = φκ ±
π

2
,

φ4,5 = φκ ±
1

2
arccos(−βκ) ,

(29)

where

βκ =
D̃12

D̃22 − D̃33

trκ√
(trκ)2 − 4 detκ

(30)

andφκ represents an angle between the first principal direction ofκ and the axisx1.

The equations (25), (26) imply the following conditions

∂

∂θ2

[
καβ(w)D̃αβλµ(θ2, ω2, φ)κλµ(w)

]
= Λ(1− ω2)(h2 − h1)− λ1 + λ2 , (31)

∂

∂ω2

[
καβ(w)D̃αβλµ(θ2, ω2, φ)κλµ(w)

]
= Λ(1− θ2)(h2 − h1)− λ3 + λ4 (32)

Let us define the auxiliary quantities

Q =
καβ(w)

∂D̃αβλµ

∂θ2

κλµ(w)

Λ(1− ω2)(h2 − h1)
, P =

καβ(w)
∂D̃αβλµ

∂ω2

κλµ(w)

Λ(1− θ2)(h2 − h1)
(33)

If λ1 = 0 andθ2 6= 1, ω2 6= 1, the conditions (31), (32) assume the form

Q = 1 , P = 1 (34)

The stationary conditions with respect toαi areαiλi = 0 (do not sum over i)

The condition
∂2L

∂(αi)2
≥ 0 impliesλi ≥ 0.
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3.2 The computational algorithm

The equilibrium equation (22) is solved approximately by the three-node triangular plate bend-
ing finite element method (element DKT), as developed in Batoz et al. [13] and Kikuchi [14].
The analysis and optimization program has been written in C++ and graphical procedures have
been written in Java. The numerical solution to the problem(P̃ ) is constructed iteratively, the
main steps being similar to those applied in Lewiński and Othman [5] and in Othman [6].

Step 0.Fix the data:E, ν, h1, h2, Ω, p = p(x), V and the boundary conditions on∂Ω. Discretize
Ω into the elementsΩe, e = 1, 2, . . . , Ne; assign(θe2, ω

e
2, φ

e) for eachΩe. We apply the simplest
possible approximation

f(x) =
Ne∑
e=1

f eχΩe(x) , f ∈ {θ2, ω2, φ} (35)

Step 1.ComputeD̃αβλµ(θe2, ω
e
2, φ

e) andD̃ij(θe2, ω
e
2, φ

e).

Findw representing the deflection field satisfying (22).

If the step 1 is executed first time, computeJ = f(w) by (19) and initializeJold = J . In
opposite case, skip this command.

Computeκeαβ(w)

Compute the rootsφei , i = 1, . . . , 5 by (29)

Find the energy density for each element;

U e
i =

1

2
κeαβ(w)D̃αβλµ(θe2, ω

e
2, φ

e
i )κ

e
λµ(w)

Choose this rootφej for whichU e
j is the greatest for each element independently.

Step 2.Fix an initial value of the multiplierΛ

Step 3.For each element compute analytically the derivatives:

∂D̃αβλµ(θe2, ω
e
2, φ

e)

∂θ2

,
∂D̃αβλµ(θe2, ω

e
2, φ

e)

∂ω2

,

andQe, P e by (33).

Fix ζ ∈ [0, 1] called a move limit. Choose a non-negativeη, sayη = 0.75, a damped factor.
Updateθ2 by the scheme of Bendsøe [9]

θe2 =


max{(1− ζ)θe2, 0} if (i)

θe2(Qe)η if (ii)

min{(1 + ζ)θe2, 1} if (iii)

(36)

The conditions (i)-(iii) are defined as follows
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(i) θe2(Qe)η ≤ max{(1− ζ)θe2, 0}
(ii) max{(1− ζ)θe2, 0} ≤ θe2(Qe)η ≤ min{(1 + ζ)θe2, 1}
(iii) min{(1 + ζ)θe2, 1} ≤ θe2(Qe)η

To updateω2 a similar scheme is used, withQ replaced byP . Thus we findω2. A finite element
will be called passive if (ii) holds and active in other cases.

In the case when ”old”θe2 assumes the values 0 or 1 orωe2 assumes these values the new values
of θe2 andωe2 are not changed.

Compute the volume

VΛ =
Ne∑
e−1

∫
Ωe

[(h2 − h1)(θe2 + ωe2 − θe2ωe2) + h1] dx

As noted by Othman [6], ifVΛ > V one should increaseΛ and go to Step 3. IfVΛ < V then
decreaseΛ and go to Step 3. IfVΛ ≈ V then, by a standard routine, compute the complianceJ

and initializeJnew = J .

If Jnew ≈ Jold then STOP. In opposite case setJold = Jnew and go to Step 1.

4 A smart material formulation

By using the duality methods presented in Gibiansky and Cherkaev [1], Allaire et al. [15], Al-
laire and Kohn [16], Lewínski and Telega [2] and Telega and Lewiński [17] one can reformulate
the problem(P̃ ) considered in Sec. 2 to the following minimization problem

(P̂ ) min
0≤m2≤1

min
M∈S

{∫
Ω

2W ∗(M(x),m2(x)) dx | Eq. (17) holds

}
HereS represents the set of statically admissible momentsM = (Mαβ) and the potentialW ∗

is given by

2W ∗ =


1

2
(I(M))2H(ξM) if I(M) 6= 0

1

2
{L}m(II(M))2 if I(M) = 0

(37)

where

ξM =
II(M)

|I(M)|
, I(M) =

1√
2
trM ,

II(M) =
1√
2

[
(trM)2 − 4 detM

]1/2 (38)

The functionH(ξ) is defined by 
H1(ξ) if ξ ≥ ξ1

H̃(ξ) if ξ ∈ [ξ2, ξ1]

H2(ξ) if ξ ∈ [0, ξ2]

(39)
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Hα(ξ) = aα + cαξ
2 ,

H̃(ξ) = Hα(ξ) + dα(ξ − ξα)2 , α = 1, 2.
(40)

The parameters involved in (39)-(40) depend onKα = (kα)−1, Lα = (µα)−1 andmα:

ξ1 =
∆K[L]m
∆L[K]m

, ξ2 =
m2∆K

L2 + [K]m
,

a1 = {K}m , a2 =
K1K2 + L2〈K〉m

L2 + [K]m
,

c1 = {L}m , c2 = L2

d1 =
m1m2(∆L)2[K]m

[K + L]m[L]m
, d2 =

m1∆L(L2 + [K]m)

[K + L]m

(41)

The operation{·} is explained in (12).

Note thatHα are stiched smoothly with̃H atξM = ξα. Hence the inverse constitutive relations:

καβ =
∂W ∗

∂Mαβ
are continuous.

Let us compare the formulations(P̃ ) and(P̂ ). In (P̂ ) the functionm2 is the only design variable,
in contrast to three design variables of the problem(P̃ ). However, the static problem built in
into (P̂ ) is nonlinear, which makes both the formulations equally difficult. It has turned out that
the formulation(P̂ ) is well suited for one-dimensional problems of circular plates, see Kolanek
and Lewínski [7]. The method is sufficiently flexible to consider the limit case ofh1 = 0, which
corresponds to the shape optimization problem.

The result (37), (39) is essential to understand both the relaxation formulations(P̃ ) and(P̂ ).
We note that the plate domain is divided into 5 different subdomains, where, see Gibiansky and
Cherkaev [1]:

a)m2 = 0 or the plate is homogeneous and isotropic of constant thicknessh = h1

b)m2 = 1, as above, buth = h2

c) ξM > ξ1 the microstructure is of first rank andφ is given byφ4 or φ5

d) ξM ∈ [ξ2, ξ1]; the microstructure is of first rank;φ = φ1, φ2 or φ3;

e) ξM ∈ [0, ξ2]; the microstructure is of second rank;φ = φ1, φ2 or φ3;

The formulation(P̂ ) can be inverted to its primal form involving the displacement fieldw as
the main unknown, see Lipton [18] and Lewiński and Telega [2]. Then the regimes (c), (d), (e)
assume the form expressed in terms of strains:

c) ξκ ≥ ξ̆1

d) ξκ ∈ [ξ̆2, ξ̆1]

e) ξκ ∈ [0, ξ̆2],

where

ξκ =

√
(trκ)2 − 4 detκ

|trκ|
(42)
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is a non-dimensional invariant characteristics of the strain fieldκ.

Moreover,

ξ̆1 =
∆k

∆µ
, ξ̆2 =

m2∆k

µ2 + [k]m
(43)

5 Optimal layouts of square plates subjected to a uniform loading

The numerical solutions presented here concern the square plates of side lengths 1.0 m by 1.0 m.
The thicknesses are assumed as:h1 = 0.01 m andh2 = 0.02 m. The volume is taken asV =

0.001875 m3. The elastic moduli are:E = 2.1 · 108 kN/m2, ν = 0.3. The density of a uniform
dead loading applied equals:p = 1.0 kN/m2.

Two cases of the homogeneous boundary conditions are considered: a clamped support along all
the edges or a fully supported edge. Thus in all cases it is sufficient to consider 1/8 of the plate or
confine consideration to the right- angled triangle of legs of length 0.5 m. This triangle domain
is divided into triangular DKT finite elements, with 36 elements along a leg. The compliance
of a homogeneous plate of a constant average thickness, having a given volumeV is denoted
by J0. The ratioJ/J0 is called a relative compliance and its deviation from unity represents the
advantage we have by redistribution of nonhomogeneities.

The optimal layout of the density of the second plate material:m2 = ω2 + (1 − ω2)θ2 for
the clamped plate of dimensions and elastic characteristics given above is presented in Fig. 1.
Here the relative compliance equals:J/J0 = 0.66. The whole range of the values ofm2 from
0 to 1 is represented by the grey scale- from white (m2 = 0) to black (m2 = 1).The strongest
material, where the thickness equalsh2, finds its place along the sides. The corners are just
the places where the weaker characteristics prevail. It turns out that the smaller value of the
thickness is nowhere attained, since the corners and other intermediate regions are occupied by
the composite materials described by the regimes (c)-(e), see Fig. 2. The domains of regimes
are depicted by the grades of grey:

the light-grey regions correspond to the regime (c),

the grey regions characterize the regime (d) and

the dark-grey regions correspond to the regime (e).

Note that the regime (d) separates the regimes (c) and (e).

A different layout ofm2 is observed for simply supported plates, cf. Fig. 3. Here the central part
is, as before, occupied by the 2nd rank ribbed plate but this domain is now almost circular. The
first rank ribbed material (c) finds its place in the corners, see Fig. 4. The relative compliance
is nowJ/J0 = 0.81. Thus the advantage of optimization is smaller than in the case of clamped
plates.
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Fig. 1.Clamped plate. Distribution ofm2

Fig. 2.Clamped plate. Layout of regimes: (b)-(e)
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Fig. 3.Simply supported plate. Distribution ofm2

Fig. 4.Simply supported plate. Layout of regimes: (c)-(e)
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6 Final remarks

The optimization results presented are referred only to the thin plate (Kirchhoff) model. This is
the only plate model for which a rigorous relaxation of the minimum compliance problem has
been put forward.

If one assumes that the so called laminates of finite rank suffice for the relaxation of the mini-
mum compliance problem of Reissner-Hencky plates we have the result of Lipton [19], Lipton
and Diaz [20], Diaz et al. [3] according to which the laminates of 3rd rank are sufficient to fill
up the design space.

A rigorous three-dimensional approach to plate optimization has been recently presented by
Olhoff et al. [8].
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